
A Python Utility for Working with OBO Foundry Terms
Jonathan P. Bona
Department of Biomedical Informatics, 
University of Arkansas for Medical Sciences, Little Rock, AR

OBO Principles regarding term identifier
conventions require ontology terms to use
numeric local term identifiers, and forbid local
identifiers that “consist of labels or
mnemonics meaningful to humans.”

This requirement can make it hard to work
directly with the identifiers. To write by hand
(or in code) an assertion that a certain
individual is an instance of UBERON:lung’,
one must know that its URI is:
http://purl.obolibrary.org/obo/UBERON_0002048

This poster describes a simple utility that
allows programmers to import
representations of an OBO Foundry
ontologies as Python classes, and then use
those Python classes within a program to
refer to terms in the ontology by their labels
rather than managing the URIs explicitly.

To solve this issue our tool generates a
Python class for each ontology. For each term
defined in an ontology, the ontology’s Python
class has an attribute named using the term’s
label, with underscores substituted for spaces
where applicable. The value of a term’s
attribute is a string representation of its URI.

Following the running example, an import
statement at the top of a Python source file
brings in a Python class for UBERON that
allows one to get the URI for any term in the
UBERON ontology. The shows an interactive
Python session using the URIs for two terms.

This tool simplifies using terms from OBO
Foundry ontologies within Python programs.
We have used it so far with a handful of
ontologies. It is under active development.
Planned improvements include handling
imports within ontology files, and automating
the generation of Python classes for each
ontology when the ontologies are updated.

A draft implementation is available in a public
GitHub repository:
https://github.com/jonathanbona/obof-py

In Python software that we have written in the
past to transform instance data into semantic
representations with OBO Foundry
ontologies, we started out managing the
associations between ontology labels and
URIs with ad-hoc mappings involving only
terms that were of immediate interest.

For example, we might maintain a Python
dictionary object for all the UBERON terms
used in our project and then use the Python
expression uberons[‘lung’] to retrieve
the URI for that term.

Among the disadvantages of this approach is
the need to first look up individual terms using
external resources and then copy their labels
and URIs into source code. This manual step
is clunky, error-prone, and difficult to reuse
from one project to the next.

http://www.obofoundry.org/principles/fp-003-uris.html

https://github.com/jonathanbona/obof-py

